Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rickli, J (Ed.)Free, publicly-accessible full text available August 1, 2026
-
Yang, J (Ed.)Real-time Hybrid Simulation (RTHS) is a technique wherein a structural system is divided into an analytical and an experimental substructure. The former is modeled numerically while the latter is physically present in the laboratory. The two substructures are kinematically linked together at their interface degrees of freedom (DOFs) and the equations of motion are solved in real-time to determine the structure’s response. One of the main challenges of RTHS is to include the effects of soil–foundation–structure interaction (SFSI), which can have a substantial effect on the overall response. The soil domain cannot be modeled experimentally due to the large payload size. On the other hand, modeling the soil domain numerically, using a continuum-based approach, in real-time is challenging due to the associated computational cost. To address these issues, this paper presents a framework for seismic RTHS of SFSI systems using a Neural Network (NN)-based macroelement model of the soil–foundation system. A coupled SFSI model is used to train the NN model and the loss function is based on dynamic equilibrium at the interface between the foundation and the structure. The framework is demonstrated using a three-story building with the lateral load resisting system comprised of moment resisting and damped brace frames. The proposed framework ensures a stable and accurate RTHS, accounting for SFSI by incorporating: (a) spring elements at the output DOFs of the NN model to remove rigid body modes; (b) dashpot elements at the output DOFs of the NN model to mitigate spurious higher frequencies of vibration; and (c) regularization in the NN model’s architecture with data augmentation to reduce overfitting.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Avouac, J-P (Ed.)The Pelona–Orocopia–Rand (POR) schists were emplaced during the Farallon flat subduction in the early Cenozoic and now occupy the root of major strike-slip faults of the San Andreas Fault system. The POR schists are considered frictionally stable at lower temperatures than other basement rocks, limiting the maximum depth of seismicity in Southern California. However, experimental constraints on the composition and frictional properties of POR schists are still missing. Here, we study the frictional behavior of synthetic gouge derived from Pelona, Portal, and Rand Mountain schist wall rocks under hydrothermal, triaxial conditions. We conduct velocity-step experiments from 0.04 to 1 μm/s from room temperature to 500ºC under 200 MPa effective normal stress, including a 30 MPa porefluid pressure. The frictional stability of POR schists in the lower crust is caused by a thermally activated transition from slip-rate- and state-dependent friction to inherently stable, rate-dependent creep between 300ºC and 500ºC, depending on sample composition and slip-rate. The mineralogy of POR schists shows much variability caused by different protoliths and metamorphic grades, featuring various amounts of phyllosilicates, quartz, feldspar, and amphibole. Pelona and Portal schists exhibit a velocity-weakening regime enabling the nucleation and propagation of earthquakes when exhumed in the middle crust, as in the Mojave section of the San Andreas Fault. The contrasted frictional properties of POR schists exemplify the lithological control of seismic processes and associated hazards.more » « lessFree, publicly-accessible full text available August 11, 2026
-
Kaplan, J (Ed.)The Mississippi River Basin (MRB), the fourth-largest river basin in the world, is an important corridor for hy- droelectric power generation, agricultural and industrial production, riverine transportation, and ecosystem goods and services. Historically, flooding of the Mississippi River has resulted in significant economic losses. In a future with an intensified global hydrological cycle, the altered discharge of the river may jeopardize commu- nities and infrastructure situated in the floodplain. This study utilizes output from the Community Earth System Model version 2 (CESM2) large ensemble simulations spanning 1930 to 2100 to quantify changes in future MRB discharge under a high greenhouse gas emissions scenario (SSP3–7.0). The simulations show that increasing precipitation trends exceed and dominate increased evapotranspiration (ET), driving an overall increase in total discharge in the Ohio and Lower Mississippi River basins. On a seasonal scale, reduced spring snowmelt is projected in the Ohio and Missouri River basins, leading to reduced spring runoff in those regions. However, decreased snowmelt and spring runoff is overshadowed by a larger increase in projected precipitation minus ET over the entire basin and leads to an increase in mean river discharge. This increase in discharge is linked to a relatively small increase in the magnitude of extreme floods (2 % and 3 % for 100-year and 1000-year floods, respectively) by the late 21st century relative to the late 20th century. Our analyses imply that under SSP3–7.0 forcing, the Mississippi River and Tributaries (MR&T) project design flood would not be exceeded at the 100-year return period. Our results harbor implications for water resources management including increased vulnerability of the Mississippi River given projected changes in climate.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Campbell, Barbara J (Ed.)ABSTRACT Photoautotrophic diazotrophs, specifically the generaTrichodesmiumand UCYN-A, play a pivotal role in marine nitrogen cycling through their capacity for nitrogen fixation. Despite their global distribution, the microdiversity and environmental drivers of these diazotrophs remain underexplored. This study provides a comprehensive analysis of the global diversity and distribution ofTrichodesmiumand UCYN-A using the nitrogenase gene (nifH) as a genetic marker. We sequenced 954 samples from the Pacific, Atlantic, and Indian Oceans as part of the Bio-GO-SHIP project. Our results reveal significant phylogenetic and biogeographic differences between and within the two genera.Trichodesmiumexhibited greater microdiversity compared to UCYN-A, with clades showing region-specific distribution.Trichodesmiumclades were primarily influenced by temperature and nutrient availability. They were particularly frequent in regions of phosphorus stress. In contrast, UCYN-A was most frequently observed in regions experiencing iron stress. UCYN-A clades demonstrated more homogeneous distributions, with a single sequence variant within the UCYN-A1 clade dominating across varied environments. The biogeographic patterns and environmental correlations ofTrichodesmiumand UCYN-A highlight the role of microdiversity in their ecological adaptation and reflect their different ecological strategies. These findings underscore the importance of characterizing the global patterns of fine-scale genetic diversity to better understand the functional roles and distribution of marine nitrogen-fixing photoautotrophs.IMPORTANCEThis study provides insights into the global diversity and distribution of nitrogen-fixing photoautotrophs, specificallyTrichodesmiumand UCYN-A. We sequenced 954 oceanic samples of thenifHnitrogenase gene and uncovered significant differences in microdiversity and environmental associations between these genera.Trichodesmiumshowed high levels of sequence diversity and region-specific clades influenced by temperature and nutrient availability. In contrast, UCYN-A exhibited a more uniform distribution, thriving in iron-stressed regions. Quantifying these fine-scale genetic variations enhances our knowledge of their ecological roles and adaptations, emphasizing the need to characterize the genetic diversity of marine nitrogen-fixing prokaryotes.more » « lessFree, publicly-accessible full text available July 29, 2026
-
Hartshorne, J; Cohen, J (Ed.)This paper examines the integration of justice-centered making into STEM teacher preparation programs, focusing on how these programs can foster equity and inclusivity while acknowledging the need for more research on the overlapping areas of STEM teacher preparation, social justice, and makerspace. Therefore, I synthesize recent literature in the overlapping areas and identify how each component brings insight to purposeful activity, identity formation, and connection. The discussion leads to how utilizing justice-centered-making activities can prepare educators to address systemic inequities in STEM fields. The implications of these pedagogical approaches for both teachers and students are discussed.more » « lessFree, publicly-accessible full text available March 17, 2026
-
Cuntz, J (Ed.)Fell’s absorption principle states that the left regular representation of a group absorbs any unitary representation of the group when tensored with it. In a weakened form, this result carries over to the left regular representation of a right LCM submonoid of a group and its Nica-covariant isometric representations but it fails if the semigroup does not satisfy independence. In this paper, we explain how to extend Fell’s absorption principle to an arbitrary submonoidPof a groupGby using an enhanced version of the left regular representation. Li’s semigroup\mathrm{C}^{*}-algebra\mathrm{C}^{*}_{s}(P)and its representations appear naturally in our context. Using the enhanced left regular representation, we not only provide a very concrete presentation for the reduced object for\mathrm{C}^{*}_{s}(P)but we also resolve open problems and obtain very transparent proofs of earlier results. In particular, we address the non-selfadjoint theory and we show that the non-selfadjoint object attached to the enhanced left regular representation coincides with that of the left regular representation. We obtain a non-selfadjoint version of Fell’s absorption principle involving the tensor algebra of a semigroup and we use it to improve recent results of Clouâtre and Dor-On on the residual finite dimensionality of certain\mathrm{C}^{*}-algebras associated with such tensor algebras. As another application, we give yet another proof for the existence of a\mathrm{C}^{*}-algebra which is co-universal for equivariant, Li-covariant representations of a submonoidPof a groupG.more » « lessFree, publicly-accessible full text available April 3, 2026
-
Thrash, J Cameron (Ed.)ABSTRACT Inland meltwater ponds are common throughout the dry valley region of Antarctica, with seasonal meltwater inputs driving their biogeochemistry. Here, we report the genomic sequences of eight environmental bacterial isolates covering three major phyla from Marr Pond, Taylor Valley, Antarctica.more » « lessFree, publicly-accessible full text available June 12, 2026
-
Fernandez, J (Ed.)Antarctic krill (Euphausia superba) are a key component of the Antarctic ecosystem linking primary and some secondary production to higher trophic levels including fish, penguins, seals, and whales. Understanding their response to environmental stimuli therefore provides insights into the trophic ecology of Antarctic systems. This laboratory study quantified the influence of penguin guano, a presumptive predator cue, chlorophyll concentration and flow speed on krill swimming behavior. In addition, ingestion rates with and without guano were measured. Such inquiries are necessary to determine if predator risk cues modify krill activities in ways that have consequences for other members of the Antarctic trophic web. Krill often exhibited acute turns when guano was present and varied their swimming speeds more when guano was present. These are both indicators of avoidance behavior to the negative chemical cues represented by penguin guano. Similarly, krill’s ingestion rates dropped significantly for a prolonged period of time in the presence of guano. This decrease in feeding will have impacts on krill’s nutritional value to their predators, prey uptake rates (prey survival) and the sequestration of carbon to the deep ocean as krill decrease their defecation rates. This study supports the hypothesis that krill use chemical signals to detect and behaviorally respond to food and predation risk.more » « lessFree, publicly-accessible full text available March 20, 2026
-
Cohen, J (Ed.)Free, publicly-accessible full text available March 17, 2026
An official website of the United States government
